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Based

A radiative transfer model incorporating, among other
things, the recently measured centimeter wavelength opacity
of H2S, the full line catalog of PHi, and absorption due to CO
has been developed to study the tropospheric vertical structure
of Neptune. To match radio-telescope observations, subsolar
amounts of NH3 and supersolar amounts of H2S are found to
be needed, as has been previously noted. To match both the

measured microwave emission and the measured opacity at 13
cm and 6.3 bars by Voyager 2, an HzS dominant atmosphere
(H2S/NH3 --_40) with enhanced PH_ (15 x solar) or NH3 super-

saturation with respect to the putative NH4SH cloud (400 ppbv)
seems to be indicated. Due to the possible importance of PH_
opacity, it is suggested that measurements of its opacity could
aid in resolving some of the outstanding ambiguities concerning
Neptune's tropospheric structure. Q1996AcademicPress,Inc.

1. INTRODUCTION

Neptune is the most distant of the jovian planets and

hence has typically been the last to be scrutinized closely.

Voyager 2 made its closest approach to Neptune on August
25, 1989, from which we have learned much of what we

know of the planet (see J. Geophys. Rev. 96, 1991). Nep-

tune is a relatively dynamic planet, radiating 2.5 times the

amount of energy it receives from the Sun (Conrath et.

al. 1989) and exhibiting significant spatial and temporal
variability (e.g., Baines and Smith 1990, and references

therein).

An analysis of Neptune's microwave spectrum using

thermochemical modeling was undertaken by Romani et
al. (1989), prior to the Voyager rendezvous, and included

opacity from NH3, H20, hydrometeors, and collisional-

induced H2 absorption. Two primary (and related) conclu-

sions from that work are that ammonia seems to be present

in subsolar amounts and that the 20-cm brightness temper-

ature was hard to fit with the rest of the spectrum assuming

only thermal emission from the planet. A later analysis
(de Pater et al. 1991) of Neptune microwave emission con-

sidered some preliminary results from Voyager as well as
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an estimate of H2S opacity and included new measure-

ments at 20 cm, eliminating much of the difficulty in match-

ing the 20-cm flux. However, H2S opacity was unmeasured

at the time, and more complete Voyager results have since
been presented. The following analysis of the microwave

emission spectrum is the first to include measured H2S

parameters as well as the full effects of PH3 and CO.

The primary objective of this analysis is to provide in-

sight into whether hydrogen sulfide is the dominant centi-

meter wavelength absorber in the upper troposphere (that

is, whether the mole fraction of H2S is numerically greater

than that of NH3 throughout the atmosphere so that HzS

provides the opacity above the NH4SH cloud) or if ammo-

nia is the dominant absorber, as well as to begin to under-

stand the importance of phosphine in shaping the micro-

wave spectrum of Neptune. The location and role of sulfur

in the giant planets have been identified as key outstanding

issues in planetary studies (Space Studies Board 1994),
especially for Uranus and Neptune (Lunine 1993). A brief

synopsis of the planetary model is presented in the next

section, followed by a discussion of the microwave proper-
ties of the various constituents and an examination of the

constraints used in the models. Modeling results and dis-
cussion then follow.

2. PLANETARY MODEL

The planetary model consists of two distinct parts, the
thermochemical model and the radiative transfer model.

The thermochemical model determines the structure of

the planet given a set of conditions within the interior,

while the radiative transfer model calculates the spectral

characteristics of the microwave emission of the planet

given the structure from the thermochemical model.

2.1. Thermochemical Model

For pressures exceeding 0.5 bar, radiative-convective

modeling of jovian-like atmospheres shows that convection

should dominate and the temperature-pressure (T-P) pro-
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file should follow an adiabat (Appleby and Hogan 1984,

Appleby 1986), which simplifies modeling of the tropo-

sphere. Thermochemical modeling computes the tempera-

ture-pressure profile and cloud structures assuming an
adiabatic atmosphere in hydrostatic equilibrium. The ther-
mochemical model takes an assumed abundance distribu-

tion of the atmospheric components deep in the atmo-

sphere (where all constituents are assumed to be gaseous)

and steps out in discrete layers of pressure. At each pres-

sure step, dP, a check is made to see if any component

has condensed out and the new temperature, 7", is deter-
mined. To check for condensation, one simply determines

if the new partial pressure of a constituent at a given layer

exceeds its saturation pressure for that layer's temperature.
If condensation has occurred new mole fractions and tem-

perature are computed. At high altitudes (P < 6.3 bars),
the measured T-P profile (Lindal 1992) is used, and

agreement is forced at 6.3 bars. For a more thorough treat-
ment see, e.g., de Pater and Massie (1985) and Atreya

and Romani (1985).

2.2. Radiative Transfer Model

The radiative transfer model calculates the observed

brightness temperature utilizing the computed constituent
abundance and temperature profiles from the thermo-

chemical model. For a plane-parallel atmosphere in local

thermodynamic equilibrium at a given angle relative to the

normal (0, the "look angle"), neglecting scattering, the

emergent flux can be written as

B,.(f,/_) = f_ B,.(T(r))E _ dr (1)
/Z

where B,.(T) is Planck's radiation law, /Z = cos 0 is the
cosine of the look angle (see de Pater and Massie 1985),

and r is the optical depth.

In general, the disk averaged brightness temperature
of a planet, TD, is derived from averaging the brightness

temperature distribution over the disk of projected area A,

1 ["= [,_,,,,,_,,B,,(T, rl, &)rl drl d&,B,,(TD) = _- jo jo (2)

where -q is the radial distance from the center of the disk

and _0 is the azimuthal angle. Rv(O ) is the radius of the

planet for a given pressure level. If 0 = f(/z, 0) and B,,(T,

tL, 0) is independent of 0, this can be rewritten as

f(/z = 1, 0) = 0, and f(/z = 0, 0) = Rp(0). _';](t z) is called

the look angle weighting function. For a spherical planet.

M(/x) = 2/a. and the disk averaged brightness temperature
in this case can then be further simplified and written in

terms of the exponential integral,

B,.(TD) = 2 J'[ B,.(T(r))E2(r)dr

= -2 f,[ B,,(T(r))dE3(r),

(5)

where

y i1jl

(6)

andy = l//z.

If the look angle weighting function is fit to an Nth-

order polynomial such that

N

s4(/z) = _ a,,/z", (7)
i1 = l

then the disk averaged brightness temperature for an ob-

late spheroid can be written as

N

B,(T,,) = Z a,, f[ B,,(T(r))E,,_ ,(r) dr (8)
II = I

#l = I

To a high degree, Neptune can be considered a spherical

planet and the spherical approximation may be used (de

Pater and Massie 1985). However, for other outer planets,

most notably Saturn, sphericity cannot necessarily be as-

sumed and the look angle weighting function concept may

be useful for numerically simplifying their study (De-

Boer 1995).

where

B,,(TD) = f c',B,,( T, /Z),_t(/Z ) d/z,

1 f_,,.f(_, O)_ dO,_(/z ) = - -d

(3) 3. OPACITY OF THE ATMOSPHERIC CONSTITUENTS

(4)

Now that the model has been developed, determination

of the opacity of the atmospheric constituents is necessary

to complete the formulation. A table listing solar abun-
dances is instructive in determining the molecules of impor-
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TABLE 1

Solar Abundances of Planetary Components
(Mole Fraction)

('amcron 11982) Anders-Grevasse (19891

H, 8.7,',;8 × 111 _ 8.346 × 10

Hc 1.186 × 10 _ 1.623 × 1(1 1

1-t:O 1,213 × 10 _ 1,424 x 1(1 _

('H4 7.338 × 10 4 6,1143 × 1(I a

NI-t_ 1.529 × 10 4 1.873 x l(I 4

tI:S 3.31)4 × 10 s 3.1181 × 10 5

PH_ 4.297 × 111 7 6.222 × 10 7

tance (see Table I). We will briefly examine the sources

of opacity, similar to previous studies (de Pater and Mitch-
ell 1993).

3.1. H,_S

In previous models that have investigated the spectra of

the outer planets, the opacity of hydrogen sulfide (H2S)

has been one of the most poorly constrained parameters

and is often neglected. With the absorption formalism de-

veloped in DeBoer and Steffes 11994) it is possible to
more accurately determine the effects of this molecule.

Hydrogen sullide was found to be more opaque than the
Van Vleck-Wciskopf models predicted, by at least a factor

of two in the wings. The radiative effects of this molecule

arc thcrcfl)re more pronounced than previously believed.

3.2. Ntt3

Ammonia (NH3) is a critical absorber at centimeter

wavelengths due to a series of strong inversion lines near
24 GHz. The first accurate formalism to model ammonia's

absorption under conditions suitable for the outer planets

(Bergc and Gulkis 1976) was based on a modified Ben-

Reuven lineshape. More recently Spilker (1990) and Joiner

et aL (1989) have more thoroughly measured the opacity
of ammonia under jovian conditions at centimeter and

millimeter wavelengths and newer, more accurate formal-

isms have been developed.

Spilker's version, though somewhat complex, is very ac-

curate at centimeter wavelengths and is used for frequen-
cics below 40 GHz, as suggested. This formalism was also

extrapolated below the lowest temperature measurement
at 190 K. Above 40 GHz this formalism can exhibit anoma-

h)us behavior (as well as in instances when the NH3 mole
fraction is very small) and therefore the formalism devel-

oped in Joiner and Steffes (1991) is used in these cases.

Although the two lk)rmalisms agree very well at 40 GHz,
a linear transitional period at about 40 GHz is used to

avoid any discontinuity in the absorption.

3.3. H20

Water vapor also strongly affects microwave emissions

and is undoubtedly the most thoroughly studied molecule

due to its important role on the earth. The broadening

parameters of water vapor in a hydrogen/helium atmo-

sphere have also been recently measured near the 183-

and 380-GHz transitions (Dutta et al. 1993) and been

incorporated into a newer formalism for water absorption
under jovian conditions. The formalism of this work is

based on a terrestrial model (Waters 1976, Ulaby et al.

1981) with a correction term for jovian atmospheres
(Goodman 1969), and is roughly a factor of two less

than Goodman's at higher frequencies (>20 GHz) and

varies from being 10 to 100% less at lower frequencies
(DeBoer 1995).

3.4. PH3

Phosphine has been identified on Jupiter and Saturn

(Weisstein and Serabyn 1994a,b) and it is therefore in-

cluded in this model of the outer planets. No laboratory
measurements of the microwave or millimeter-wave line

parameters of PH3 have been made and therefore its line-

shape is purely speculative. By including a range of param-

eters, however, its potential effects on the atmosphere may
be investigated. Phosphine has a strong rotational line at

267 GHz and a rich rotational spectrum above 500 GHz
as well as a series of weak inversions lines in the centimeter

wavelengths. A Van Vleck-Weiskopf lineshape is assumed

with a range of reasonable line broadening parameters and

the same self-broadening temperature dependence as NH3

(given its structural similarity to PH3). Figure 1 shows the
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FIG. I. The microwave and millimeter-wave spectrum of phosphine.

For the middle set of spectra, the heavy line is the spectrum with the

nominal values for the line broadening parameters used in the text, while

the dashed line doubles these parameters and the thin solid line halves

them. The lower curve shows the opacity at microbars of pressure to

exhibit the individual transition structure. The short-dashed upper curve is

the absorption spectrum of H2S with the same mixing ratio as for phospine.
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strong 267-GHz line as well as an absorption spectrum

computed for conditions encountered on the outer planets

with different line broadening parameters. Three hundred

lines are used from the Poynter and Pickett (1985) catalog,

including all lines below 1840 GHz. Note also in this figure

that H2S absorption (with the same mixing ratio as phos-

phine) is shown.

3.5. Absorption by Other Constituents

CO has four rotational transitions in the millimeter

wavelengths and has been identified on the outer planets
(e.g., Marten et al. 1993). Like phospine, no laboratory

measurements of this molecule under appropriate condi-

tions and frequencies exist, and therefore a range of param-

eter values will be investigated. The dominant effects from
the inclusion of this molecule will be seen to be in the

near vicinity of the linecenters and are therefore relatively

insensitive to the exact form of the [ineshape. A Van

Vleck-Weiskopf lineshape is assumed in this model and

a total of 26 lines are used, with the highest frequency

being 2984 GHz.

Under collision, molecular hydrogen (H2) exhibits a

transient dipole moment which can interact with radia-

tion. Joiner and Steffes (1991) fit an expression similar
to Goodman's (1969) to a quantum mechanical model

developed by Borysow et al. (1985), which included

methane, and is the formalism used for H2 opacity in

this work. Absorption by methane itself is negligible in

the microwave region and will be neglected (Jenkins and

Steffes 1988).

The effects of cloud absorption on the brightness

temperature spectrum are considered. The complex re-

fractive index is a key parameter in the determination

of the effects of clouds on the brightness temperature

spectrum. Unfortunately, there are no microwave data

on the refractive index of the liquid or ice phases of
the constituents discussed above, with the exception of

water. In this work, absorption due to liquid water

clouds is included, where the refractive index is computed

following King and Smith (1981). The effects are similar

to previous studies (de Pater and Mitchell 1993). Scatter-

ing at these wavelengths is assumed negligible, as has

been shown by others (e.g., de Pater and Mitchell

1993).

The infrared properties of NHB-ice have been measured
by Sill et al. (1980). The lowest frequency measured was

50 cm _(1500 G Hz) with a value of n" = 0.016. The real part

has a value of n' _ 1.4 at 4 ttm. The complex refractivity of
H2S-ice has also been measured down to 21 cm _, where

n' = 1.15 and n" = 0 (Pearl, Sill and Ferraro, personal

communication). For H2S liquid n' = 1.37 while n_H4SH =

1.74 (CRC, 1981) and n_'H_ = 1.309 (Baines and Hammel
1994).

4. OBSERVATIONAL CONSTRAINTS

There are a number of observational results that can be

used in order to constrain which of the models for Neptune

may be valid. These include radio occultation results, which

yield absorptivity and temperature-pressure profiles, and

radio-emission measurements by large radio telescopes.

Once constraints on the emission and absorption have been

set, modeling will attempt to best fit the data using the

model developed in the previous chapter, by selecting dif-
ferent constituent distributions. Of course, the solution

obtained is not unique; however, by utilizing all of the
available data, realistic constraints on the structure can be

set. In this section, the observational constraints and their
results will be introduced and discussed.

4.1. Radio Occultation

The first constraint is to match the physical temperature

measured at the deepest point by the Voyager radio occul-

tation experiment. This is done in the thermochemical

model by starting deep within the atmosphere and stepping

out, assuming a wet adiabatic lapse rate. Above the deepest

measured point the actual measured lapse rate is used. For

Neptune_ the deepest point probed was at S band (13 cm),

and nominally reached a pressure of 6.27 bars and a tem-
perature of 135 K (Lindal 1992), with an uncertainty of

roughly 1 bar of pressure and 5 K, and maximum values
of 7.7 bars and 160 K.

Absorption was also measured on the Voyager link.

Lindal attributed the absorption to gaseous ammonia and

gives a nominal ammonia mole fraction of 500 +_ 150 ppbv.

Using Berge and Guikis (1976), this corresponds to 8.2 x
10 4 _+ 2.4 × 10 -4 dB/km at the S band. However DeBoer

and Steffes (1994) point out that H2S could also account

for this absorption. Phosphine could also account for some

amount of the measured opacity, as will be seen.

4.2. Radio-Emission

Another important set of constraints consists of the ra-
dio-emission observations from earth-based radio tele-

scopes. Reliable microwave measurements of Neptune be-

gan in the late 1960s and early 1970s. Due to Neptune's

extreme distance, however, single dishes at these frequen-
cies cannot resolve the planet from the background. The

data therefore are subject to the possibility of background

contamination from microwave emitters near the galactic

center, as evidenced by the large spread of data with non-

overlapping error bars in Fig. 2.

Multiple dishes used as an interferometer can resolve

Neptune from the background and this work therefore

emphasizes the data from interferometers (the filled data

points in the subsequent figures showing Neptune's mea-

sured spectrum) such as the Very Large Array (VLA).
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Even VLA data need be subject to scrutiny, especially at 20

cm with the rather wide spread in brightness temperature
there. The 20-cm emission measurement with the lowest

value is the one that will be emphasized, since it is the
most recent, and the intent of that VLA observation was

specifically to very accurately determine the 20-cm bright-

ness temperature and therefore a very long integration

time was used (de Pater et al. 1991). Another difficultly is

the low value of the data point at 22 GHz (1.3 cm) taken

by de Pater and Richmond (1989), which seems inconsis-
tent with the rest of the VLA data set. That value will be

assumed to be a lower limit due to measurement difficult-

ies, and efforts will not be made to precisely fit it in the

modeling. A complete list of prior observations of Neptune

as well as their new VLA observations are given in De

Pater and Richmond (1989). In addition, more recent mea-

surements of Neptune have been taken and are listed in
Table II.

4.3. Other Constraints

Based on work by Massie and Hunten (1982) and Gier-
asch and Conrath (1987), intermediate (or frozen) hydro-

gen is assumed. Differences in the ortho-para fraction can
result in differences of about 20% at 3 mm (de Pater and

Mitchell 1993). A helium mole fraction of 0.19 (Conrath

et al. 1991) is used throughout the model. Significant

amounts of methane are also found on Neptune. From IR

studies, Baines and Hammel (1994) have determined a

tropospheric mole fraction of 3% for CH4 below the meth-
ane cloud. Other observers have determined methane mole

TABLE II

Neptune Observations

Reference v (GHz) T (K)

Romani et al. (1989)

De Pater et al. (1991)

Muhleman and Berge (1991)

Griffin and Orton (1993)

Hofstadter (1993)

Greve et al. (1994)

1.50 318 -+ 16

1.49 276.4 _ 10

8.45 191.2 -+ 6

112.8 114 -+_7

90 133.9 +_ 7.4

150 110.3 -+ 3.6

156 105.3 - 2.3

227 91.9 _+ 3.5

237 91.9 _+ 1.8

269 88.3 _+ 1.8

279 85.4 _+ 3.9

337 84.1 _+ 3.0

347 80.6 -+ 1.7

374 79.5 -+ 2.5

392 78.7 +- 3.8

410 76.8 -+ 1.8

460 74.9 -+ 1.9

674 66.8 -+ 3.1

808 61.0 -+ 3.5

858 61.5 -+ 2.7

4.84 191 -+ 15

8.3 173 ± 10

43 127 -+ 9

fractions of 2-4% (see, e.g., Orton et al. 1986, de Pater and
Massie 1985, Lindal 1992). This work assumes 3% CH4.

5. RESULTS
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FIG. 2. The measured brightness temperature spectrum of Neptune

along with calculations assuming solar abundance values with 3% methane

(labeled "Solar") and distribution A (where A is a solar model in the

volatiles' abundances, except that 23% ammonia and 3% methane are

assumed; see text).

The modeling will be broken into two different distribu-

tion types, ammonia predominant atmospheres and hydro-

gen sulfide predominant atmospheres, which are dis-
cussed below.

5.1. Ammonia Predominant Atmospheres

If one assumes a strictly solar abundance atmosphere
(see Table I) 1, the result is an ammonia predominant atmo-

sphere. The ammonia will deplete the hydrogen sulfide in

the putative ammonium hydrosutfide cloud located near

the 12-bar pressure level. In this case it is apparent that

discrepancies exist at low frequencies (below 20 GHz)

where the model spectrum is far too cold (see Fig. 2). This

is due to NH3 present in the upper atmosphere. Further-

more, the Owens Valley data point at 112 GHz suggests

that a greater source of opacity is needed at the altitude

probed by this frequency, as does the Greve et al. (1994)

point at 43 GHz. Obviously some NH3 (the dominant mi-
crowave absorber in this distribution) needs to be removed

For consistency with other works, the Cameron abundances, as sum-

marized in Atreya 1986, will be used as the reference.
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FIG. 3. Cloud structure and temperature profile of distribution A.

distribution results in an S-band (13 cm) absorptivity at

the 6.3-bar level of 2.31 × 10 -3 dB/km, which is roughly

a factor of 3 greater than the absorption measured by

Voyager and more than a factor of 2 greater than the upper

limit given for the Voyager results in Lindal (1992).

Another major problem with distributions similar to that

of A is that they are too warm at millimeter wavelengths.

Adding even large amounts of NH3 to cool the millimeter-
wave portion of the synthetic spectra to fit the measured

data is not sufficient, and this drastically cools the centime-

ter portion to be inconsistent with the VLA data, as seen

in the distribution assuming solar abundances. An absorber

is needed in the upper troposphere either in addition to

NH3 or in lieu of it. Some candidates for increasing the

millimeter-wave opacity in addition to ammonia in the

troposphere are phosphine, supersaturations of hydrogen

sulfide, carbon monoxide, and cloud particulates. Adding
these constituents will also be seen to affect the centimeter

wavelength absorptivity.

5.1.1. Phosphine. Increasing the phosphine abundance

is an effective way to cool the spectrum at frequencies
greater than 40 GHz not only because of its strong set of

millimeter wavelength lines but also because it is one of

and a millimeter absorber added, relative to solar abun-
dances.

There are essentially three ways to deplete NH3 in the

upper reaches of the troposphere (upper here meaning

P -< 20 bars): (1) start out with less ammonia in the deep
atmosphere, (2) add H2S to remove NH3 via the NH4SH

cloud, or (3) add more water to remove it via the aqueous

solution cloud. The very warm data at 20 cm (1.5 GHz)

and the slope of the spectrum between 20 and 1 cm indicate

that subsolar quantities of ammonia are present below the

putative NH4SH cloud and hence options (1) and/or (3)

are valid. The apparent low abundance of ammonia does

not necessarily imply that nitrogen is globally depleted
since other reservoirs for it may exist, primarily N2, as

suggested by Marten et al. (1993).

Decreasing the amount of ammonia in the deep at-

mosphere from that of a solar abundance (but keeping

Xn2s < XNH3) allows very good fits to the VLA data below
20 GHz; however, the spectrum is too bright for frequen-

cies greater than 40 GHz as evidenced by the Greve et al.

(1994) and the Owens Valley Radio Observatory (OVRO)

data (Muhlemann and Berge 1991). In Fig. 2, curve A
shows one of the best fits when assuming that NH3 is the

dominant absorber in an upper troposphere that contains

solar H2S, 23% solar NH3, solar H20, 40 × solar CH4, and

solar PH3 (distribution A). Figure 3 shows the T-P profile

and cloud structure of distribution A, and Fig. 4 shows the

weighting function at several frequencies. However, this

Weighting Function [km -l]

10_10.00 0.01 0.02 0.03
I I

400 GHz

10° 00 Gnz

_a ...... " " _'--_ 100 GHz

101 ... ;... ...... -.-.-.: :-:.:-:2::'""
%:5.-

10 GHz
5 GHz

102

0 100 200 300 400 500 600

Temperature [K]

FIG. 4. Weighting functions of distribution A, along with the temper-

ature-pressure profile.
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FIG. 5. Measured and synthetic spectra of Neptune with varying

amounts of phosphine. The capital letters correspond to spectra discussed

in the text. B and C are the same as A except that PH3 is enhanced by

20 and 100 times the solar value, respectively, while D and E examine

the effects of halving and doubling the line broadening parameters of

distribution C. The bonom shows the difference of each synthetic spectra

from that of distribution A.

the last volatiles to condense out, therefore resulting in

fairly long path lengths through it, even at the higher fre-

quencies. Furthermore, it has been detected on Jupiter in

roughly solar amounts (Weisstein and Serabyn 1994b) and

on Saturn at about 10 × solar amounts (Weisstein and

Serabyn 1994a) and is therefore known to be present on

the outer planets.

Curve B in Fig. 5 shows the spectrum of the same distri-

bution as A but with phosphine enhanced 20× its solar
value (distribution B) and has an absorption coefficient at
6.3 bars at the S band calculated to be 2.82 x 10 3 dB/

km, about 3.5 times that measured by Voyager. Curve C

in Fig. 5 has a PH_ enhancement of 100 (distribution C)

with an S-band absorptivity of 4.99 × 10 3 dB/km. ]'his

does cool down the spectrum at millimeter wavelengths as

well as at centimeter wavelengths. Keep in mind, however,

that the opacity of phosphine under these conditions has

never been measured. Curve D in Fig. 5 shows what hap-

pens if the line broadening parameters for PH3 in distribu-
tion C (100 × solar PH3) are cut in half, while curve E

shows when they are doubled. Curves D and E have

S-band absorptivities of 7.54 × 10 3 and 3.74 × 10 _

dB/km, respectively.

It is quite interesting to note that the spectra calculated

with distributions D and E cross just above 10 GHz. This

is due to the effects of the extremely weak inversion lines

a_. low frequency. When the line broadening parameters

are large, the opacity from the low-frequency transitions

gets diluted to the point that they essentially contribute

no net opacity and hence the spectrum warms up. For the

stronger lines at higher frequencies, broadening has the

opposite effect of cooling the synthetic spectra. The con-

verse of this is true when the line broadening parameters
are narrowed.

By including approximately 10-20 times the solar
amount of PH3, therefore, it is seen that the reliable radio-

emission measurements may be fit, depending on the

choice of lineshape and its parameter values. Ammonia

predominant atmospheres with supersolar amounts of

phosphine suffer, however, by significantly exceeding the

atmospheric opacity measured by Voyager radio occulta-

tion. Clearly, laboratory measurements are needed of the

opacity due to phosphine to help resolve the effects of PH3

(Fig. 1 indicates that the opacity of phosphine should easily

be measurable in the laboratory); but the fact remains

that the opacity at S band at the 6.3-bar level of such an

atmosphere would be excessive.

5.1.2. HzS supersaturation. Another possibility in

matching the observed spectrum is through allowing super-

saturation to occur. Bezard et al (1983) and de Pater et

al. (1991) have noted that the formation of NH4SH (the

coupling agent between NH_ and H2S) may require signifi-

cant reaction surfaces (i.e., many sticky aerosols upon

which to form) and supersaturations of HzS and NH3 with

respect to NH4SH may be likely. Accordingly, the radiative
transfer code has been modified to account for this.

Allowing HzS to be supersaturated with respect to ammo-

nia in the ammonium hydrosulfide cloud achieves essen-

tially the same effect as adding phosphine. Spectra re-

sulting from supersaturations of 1 and 5 ppmv correspond

roughly to curves B and D, respectively, in Fig. 5, with

the exception that H2S supersaturations do not cool the

millimeter-wave spectrum as effectively as spectra ob-

tained by adding PH3. Both 1 and 5 ppmv have absorptivi-

ties at 6.3 bars of about 3 times that measured by Voyager.

5.1.3. Carbon monoxide. CO has been detected in

emission on Neptune (Marten et al. 1991, 1993, Rosenqvist

et al. 1992) while Guilloteau et al. (1993) have detected

this molecule in absorption, showing that CO exists in the

troposphere as well as in the stratosphere. Guilioteau et

al. derive a mole fraction of roughly 10 6 and find the likely

source of CO to be from the interior of the planet, rather

than from cometary infall or some other external source.

Neptune's strong internal heat source and the consequent

convective upwelling provide a mechanism for the trans-

port of this molecule from its interior (Lodders and Fegley

1994). The results of including 1 ppmv of CO throughout

the troposphere in the model are seen in Fig. 6, which is

seen to be identical to distribution A except near the CO

lines where rather deep absorption lines are seen. The

presence of CO is consistent with the data near the 1t5-
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FIG. 6. Measured and synthetic spectra of Neptune with the effects

of 1 ppmv CO throughout the troposphere. The bottom part of the figure

shows the differential between distribution A and atmospheres containing

CO, including the effects of halving and doubling the line broadening

parameters. It is seen that the spectra are fairly insensitive to the line

broadening parameters of CO, except near the linecenters.

GHz absorption line but not the single dish data near the

higher absorption lines. The lack of consistency at high

frequency could stem from errors in the observations as
well as in the model, which is optimized for centimeter

and millimeter wavelengths. It is seen, however, that the

effects of CO are confined to relatively narrow regions

about the linecenter and the presence of CO cannot be

used to shape the entire synthetic microwave spectra effec-

tively.

5.1.4. Conch_sion. By using the above four atmo-

spheric constituents (NH3, H2S, PH3, and CO) one can

fit the measured emission spectrum relatively well at all

frequencies; however, the resulting 13-cm opacity still ex-
ceeds that measured at 6.3 bars in the ammonia dominant

atmospheres. This situation worsens as one adds constit-

uents to better fit the millimeter wavelength data (except
CO), as has been shown. Decreasing the amount of ammo-

nia to allow the S-band absorptivity to be matched destroys

the spectral fit. Adding another absorber (e.g., phosphine)

to regain a good fit to the measured radio-emission spec-

trum then destroys the match to the S-band absorptivity.

It therefore appears that there is no ammonia predominant

atmospheric distribution consistent with thermochemical

modeling which can provide fits to the measured radio

emission as well as to the measured absorptivity. The fol-

lowing section will examine H2S predominant atmospheres
to ascertain whether they can resolve the dilemma caused

by the radio-emission and absorptivity measurements be-

ing apparently at odds.

5.2. Hydrogen Sulfide Predominant Atmospheres

By assuming that the abundance of H2S is greater than

that of NH3 below the putative NH4SH cloud, the reliable

and consistent constraining data points can be fit with an

H2S predominant atmosphere. One such model assumes
40 times solar H2S, 20% solar NH3, solar H20, 3% CH4,

and solar PH3 (distribution F). The resulting spectrum from

this distribution is shown by curve F in Fig. 7 and has an

S-band absorptivity at 6.3 bars of 4.39 x 10 -4 dB/km, which

is below the lower limit of the measured absorption. Figure

8 shows the T-P and cloud profiles for distribution F.

Adding more H2S in order to better fit the absorption

at 6.3 bars is ineffective since one is already on the H2S

saturation curve and any additional HzS condenses out.

H2S supersaturations of about 80% with respect to its ice

cloud are needed to match the S-band absorption. Super-

saturations that large seem unlikely in the dense environ-

ment in which the putative H2S cloud exists, although
strong convective upwelling could conceivably account for

it. Supersaturations of water-ice in the much less dense

upper terrestrial atmosphere typically do not exceed a few

percent. The effect of an 80% H2S supersaturation with

respect to its ice-cloud on the brightness temperature spec-

trum is very similar to the effect of an NH3 supersaturation

of 400 ppb with respect to the NH4SH cloud, as well as to
the effect of PH3 enhancements of about 10 times the

solar value, both of which are discussed below. The broad

features of the weighting functions are similar to that of

7_
o

[-

400

350

300

250

2O0

150

1O0

50
o,o

_" -I,O

_ -2.0

-3,0

10°

T I " ov.o _

t !I ld)

I L
Dr:i3

l0 t 10 _ 10 3

Frequency IGHzl

FIG. 7. Measured and synthetic spectra of Neptune with an H2S

predominant atmosphere. The capital letters correspond to spectra dis-

cussed in the text. Distribution F shows the nominal synthetic spectrum

in an H2S atmosphere (Xu_s > XNH_), while G has a small NH 3 supersatu-
ration (400 ppb). The lower curve shows the difference between distribu-

tions F and G.
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FIG. 8. Temperature-pressure and cloud prolilcs for distribution F.

Fig. 4. As in the case of the ammonia predominant atmo-

sphere, the effects of the other sources of opacity will be

examined individually.

5.2.1. NH3 Supersaturation. Adding ammonia super-

saturations with respect to the NH4SH cloud has the rela-

tively small effect of increasing the slope of the spectrum

at centimeter wavelengths but does allow the 6.3 opacity
to be fit arbitrarily well. Curve G in Fig. 7 shows the effect

of 400-ppb supersaturation (distribution G), while the bot-

tom graph shows the differential between F and G. Note

that Lindai (1992) states that the measured absorption
from the S-band radio occultation was due to about 500

ppb of NH3, which accounted for all of the measured

absorption. Here, the 400 ppb accounts for about half of

the measured opacity due to the fact that this analysis

uses the more accurate NH3 absorption formalism (Spilker
1990) which shows ammonia having less opacity than the

Berge and Gulkis formalism predicts. At this point (6.3

bar and 135 K), both H_,S and NH3 are condensing to

follow the saturation curve, as stated by Lindal. Supersolar

amounts of hydrogen sulfide along with ammonia supersat-

uration have been previously postulated to explain the

Voyager 2 results (de Pater et a11991): however, the opacity

of HaS was not known and the amounts were speculative.

5.2.2. Phosphine and CO. Adding phosphine has

roughly the same affect as did NH_ supersaturations:

namely, marginal improvement to the fit to the radio-emis-

sion spectrum and allowing the S-band opacity measured
at the 6.3 bar-level to be fit arbitrarily well. Curves H and

I in Fig. 9 show distribution F with 10 and 20 times the solar

amount of PH3, respectively, and provide very convincing

spectral fits. These amounts of phosphine bracket the mea-

sured S-band opacity, but both are still within the quoted

error bars. An intermediate amount of phosphine can ex-

actly match the quoted opacity. Therefore, phosphine pres-

ent at approximately 15 times solar along with superabun-

dances of H2S (40 times solar) seem one likely explanation

for the measured radio-emission spectrum and S-band ab-

sorptivity.
The inclusion of CO has a similar but smaller effect than

in the ammonia predominant atmosphere since there is

already additional opacity near the CO linecenters due to

H2S absorption. This makes the troughs in the spectrum

at the CO linecenters more shallow, as evidenced in Fig.

10, which also shows the spectrum with 15 × PH3 and 1

ppmv CO.

5.2.3. Conclusion. H2S predominant atmospheres

therefore allow a good fit to the measured emission spec-

trum, and, by increasing the amount of some other constit-

uent(s), the measured absorptivity can also be tit arbitrarily

well. This ability to fit all of the constraints make an H2S

dominant atmosphere, with either a supersaturation of am-

monia (of about 400 ppb) or 10-20 times the solar amount

of phosphine, a plausible model for the atmosphere of

Neptune.
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FIG. 9. Measured and synthetic spectra of Neptune assuming distri-

bution F (dashed line) but with 20 times (H) and t0 times (I) the solar

amount of phosphine, The lower curve shows the differcnlial between

these enhanced phosphine spectra and distribution F.
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FIG. 10. Comparison of distributions A (NH3 dominant atmospherc: thin line) and F (H2S dominant atmosphere; thick line). Also shown is

distribution F with 15× solar phosphine and 1 ppmv CO (dashed line).

6. CONCLUSIONS AND POSSIBILITIES FOR

FUTURE STUDIES

The atmosphere of Neptune has been analyzed assuming
it to be either an ammonia predominant or a hydrogen

sulfide predominant atmosphere. One conclusion, based

on comparison with radio emission, is that the H2S to NH3

ratio is either nearly (but less than) unity (resulting in the

ammonia predominant atmosphere) or much greater than

unity (a hydrogen sulfide atmosphere). The nominal

NH3 atmosphere (distribution A) has HzS/NH3 --_ 0.88,

while the nominal H2S atmosphere (distribution F) has

H2S/NH3 -_ 40. In either case, this ratio is greater than
the solar value of 0.2.

Figure 10 illustrates the difference between the nominal

H2S and NH3 models. The abundances of other constit-

uents (primarily PH3) can be varied to match the measured

spectrum reasonably well regardless of whether HzS or

NH3 dominates. However, when including the measured

absorptivity at S band at the 6.3-bar level from Voyager,

NH3 predominating models have absorptivities that are

too large and only get larger as one better fits the spectrum,

whereas H2S models are somewhat too small and approach
the measured absorption as one adds other constituents

to improve the fit. Figure 11 shows 2.3-GHz absorptivity

profiles for some possible abundance distributions dis-

cussed in the text. In Fig. 11, distributions A and F clearly

bracket the measured opacity at the 6.3-bar level. Distribu-

tion G (which has 400 ppb of NH3 supersaturation) and
the enhanced PH3 distribution both match the measured

opacity, as well as the measured radio-emission spectrum.

It is therefore concluded that the most probable atmo-
spheric distribution, based on the thermochemical model-

ing and constrained by the measured radio-emission spec-
trum and measured absorption at the 6.3-bar level, is that

of an H2S predominant atmosphere (H2S/NH3 _ 40) with

either a small supersaturation of NH3 (400 ppb) or PHs

enhanced by approximately a factor of 15 times the solar
amount, or some combination of the two.

It is interesting to note that for a given mole fraction

and environment, phosphine is more opaque than H2S at

10 °

t_

I

dist. F

F w/15x Pl_

10 _

tO _ 10 "_ 10 s 10 z

Absorption [dB/km]

FIG. ll. Calculated absorptivity profiles at 2.3 GHz for Neptune's

upper atmosphere along with the Voyager data point. Distribution G has

an NH3 supersaturation of 400 ppb, while the profile labeled "Fw/15 ×

PHi" has 15 times the solar abundance of PH3.
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centimeter wavelengths, as evidenced in Fig. 1, which also

shows HzS absorption with the same mixing ratio as PH3.

This figure supports the argument that PH3 is potentially

a large source of the opacity even at centimeter wave-

lengths on the giant planets, a conclusion borne out by the

analysis of the previous discussion. It is perhaps the last

important constituent of which there are no laboratory

data under appropriate conditions.
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